Identification of risk factors in epidemiologic study based on ROC curve and network
نویسندگان
چکیده
This article proposes a new non-parametric approach for identification of risk factors and their correlations in epidemiologic study, in which investigation data may have high variations because of individual differences or correlated risk factors. First, based on classification information of high or low disease incidence, we estimate Receptor Operating Characteristic (ROC) curve of each risk factor. Then, through the difference between ROC curve of each factor and diagonal, we evaluate and screen for the important risk factors. In addition, based on the difference of ROC curves corresponding to any pair of factors, we define a new type of correlation matrix to measure their correlations with disease, and then use this matrix as adjacency matrix to construct a network as a visualization tool for exploring the structure among factors, which can be used to direct further studies. Finally, these methods are applied to analysis on water pollutants and gastrointestinal tumor, and analysis on gene expression data in tumor and normal colon tissue samples.
منابع مشابه
Image Backlight Compensation Using Recurrent Functional Neural Fuzzy Networks Based on Modified Differential Evolution
In this study, an image backlight compensation method using adaptive luminance modification is proposed for efficiently obtaining clear images.The proposed method combines the fuzzy C-means clustering method, a recurrent functional neural fuzzy network (RFNFN), and a modified differential evolution.The proposed RFNFN is based on the two backlight factors that can accurately detect the compensat...
متن کاملپیشبینی ابتلا به دیابت با استفاده از شبکه عصبی مصنوعی
Background: Diabetes ever-increasing prevalence and the heavy burdens of controlling and treatment of the disease on people and the country have turned to be greatest challenges for governmental and healthcare authorities. Therefore, the disease prevention takes top priority and to do so the only possible way is detecting the effective parameters and controlling them. This study is about to for...
متن کاملPredicting The Type of Malaria Using Classification and Regression Decision Trees
Predicting The Type of Malaria Using Classification and Regression Decision Trees Maryam Ashoori1 *, Fatemeh Hamzavi2 1School of Technical and Engineering, Higher Educational Complex of Saravan, Saravan, Iran 2School of Agriculture, Higher Educational Complex of Saravan, Saravan, Iran Abstract Background: Malaria is an infectious disease infecting 200 - 300 million people annually. Environme...
متن کاملComparing Three Data Mining Algorithms for Identifying the Associated Risk Factors of Type 2 Diabetes
Background: Increasing the prevalence of type 2 diabetes has given rise to a global health burden and a concern among health service providers and health administrators. The current study aimed at developing and comparing some statistical models to identify the risk factors associated with type 2 diabetes. In this light, artificial neural network (ANN), support vector machines (SVMs), and multi...
متن کاملEarly Prediction of Gestational Diabetes Using Decision Tree and Artificial Neural Network Algorithms
Introduction: Gestational diabetes is associated with many short-term and long-term complications in mothers and newborns; hence, the detection of its risk factors can contribute to the timely diagnosis and prevention of relevant complications. The present study aimed to design and compare Gestational diabetes mellitus (GDM) prediction models using artificial intelligence algorithms. Materials ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2017